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Randomness in woven ceramic matrix composite architecture has been found to cause 
large variability in stiffness and strength. The inherent voids are an aspect of the 
architecture that may cause a significant portion of the variability. A study is undertaken to 
investigate the effects of many voids of random sizes and distributions. Response surface 
approximations were formulated based on void parameters such as area and length fractions 
to provide an estimate of the effective stiffness. Obtaining quantitative relationships between 
the properties of the voids and their effects on stiffness of ceramic matrix composites are of 
ultimate interest, but the exploratory study presented here starts by first modeling the 
effects of voids on an isotropic material. Several cases with varying void parameters were 
modeled which resulted in a large amount of variability of the transverse stiffness and out-
of-plane shear stiffness. An investigation into a physical explanation for the stiffness 
degradation led to the observation that the voids need to be treated as an entity that reduces 
load bearing capabilities in a space larger than what the void directly occupies through a 
corrected length fraction or area fraction.  This provides explanation as to why void volume 
fraction is not the only important factor to consider when computing loss of stiffness. 
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I.  Introduction 
IRCRAFT and spacecraft components that undergo extreme thermo-structural loads have reached some 
material limitations in terms of strength and weight. Woven ceramic matrix composites (CMCs), in particular, 

are candidate materials for future hypersonic vehicle components such as thermal protection and aero-propulsion  
systems due to their high strength and fracture toughness at elevated temperatures1. However, variability in the 
stiffness and strength may limit widespread implementation. Some of the variability is believed to be due to 
randomness in the architecture (tow spacing, tow size, tow nesting), as well as the unevenly shaped and spaced voids 
created as a result of the randomness in architecture and the nature of the manufacturing process. Variability also 
exists in the material properties of the constituents, but its effects on stiffness and strength are thought to be smaller 
than the variability due to architectural randomness. 
 Recent work completed by the authors found that variation in tow size and tow spacing alone does not explain all 
of the variability found in the stiffness of the ceramic matrix composite system under investigation2. Instead, we 
hypothesized that the variable size and spacing of the voids plays a larger role in the variability of the composite 
properties. The effects of voids have been studied in the past with a variety of methods and goals. There is a large 
body of work in which the results are related mostly to void volume fraction3–6. The relationships found may be 
relevant for some applications, but as will be shown later, the volume fraction of the voids is not the only thing that 
must be considered in the woven ceramic matrix composite under consideration in this work. The voids considered 
here are unevenly distributed and many have large aspect ratios. Others have shown the importance of the 
microstructure including Tsukrov and Kachanov7  who accounted for elliptical voids with arbitrary orientations and 
eccentricities. This work is limited to a 2D anisotropic solid and the holes are non-interacting. Huang and Talreja8 
demonstrated that the void shape and size was an important factor to consider, especially for transverse and shear 
stiffness of a unidirectional composite. They also observed that long, flat voids are most detrimental to the 
transverse stiffness. This agrees well with preliminary analysis on the woven CVI (Chemical Vapor Infiltration) 
SiC/SiC composite where void volume fraction is not the sole mechanism of stiffness degradation9. Uniform 
distribution of voids was assumed for the analysis which was shown to compare well for experimental data in 
unidirectional composites. However, woven composites appear to have significantly greater variability in void size 
and distribution as compared to unidirectional composites.  
 The previous work on the effects of voids as discussed above provides insight into some of the mechanisms that 
contribute to stiffness degradation, and provide a benchmark to which observations in this paper can be qualitatively 
compared. However, the intent of the current work is to be able to use quantitative information about randomly 
spaced and shaped voids to make quantitative predictions of the resulting stiffness. The motivation and background 
for this work is provided in Section II. The investigation begins with using finite element analysis to study the 
effects of non-overlapping voids (aligned in one plane) in an isotropic material, rather than a composite, so that the 
results are not convoluted by the other architectural variants. As will be demonstrated below, this is a good 
assumption to begin with since the variability in stiffness due to other architectural variations such as tow size and 
tow spacing contribute a relatively small amount to the variability in stiffness. Once the physical mechanisms of the 
effects of voids are understood at this level, the procedures can be extended to understand more complex material 
systems such as a composite.  

II.  Characterization of Composite Variability 
The composite system under investigation is a CVI SiC/SiC eight ply 5HS (harness satin) weave material. The 

composite has continuous Sylramic-iBN fiber tows (20 ends per inch) woven into a five-harness woven fabric 
preform in a [0°/90°] pattern. A silicon-doped boron nitride coating is deposited on the surface of the individual 
fibers in the tows. The fiber preform is then infiltrated with a CVI-SiC matrix which fills the tows and forms a thin 
matrix coating around the tows. The constituent material properties can be found in Ref. 9. A 2D image of one cross 
section of the SiC/SiC composite, obtained by Goldberg, Bonacuse, and Mital is shown in Fig. 19. The black areas in 
the interior of the cross section represent voids (the black area comprising the border of the image is not voids), 
which vary in location, size, and shape. Other 2D cross sections exhibit different random distributions of the voids 
and the architectural characteristics such as tow size, shape, and spacing. 

Finite element analysis of three 
cross sections similar to that of Fig. 1 
revealed significant variability in the 
transverse modulus (E3) that did not 
correlate to constituent volume 
fractions (VF), as shown in Table 19. 

A

 
Figure 1. 2D cross section of the SiC/SiC composite microstructure9 
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Note that E1 is the modulus in the longitudinal direction as labeled by the coordinate system in Fig.1. This will be 
referred to as the in-plane modulus. Since the composite is stacked in a [0°/90°] pattern, E1 is assume to be equal to 
E2. E3 will be referred to as the transverse, or out-of-plane, modulus.  

 
In an attempt to capture the variability, finite element analysis based micromechanics and monte carlo 

simulations were used to analyze a large number of hypothetical cross sections (modeled as representative volume 
elements (RVEs)) that were generated based on quantified variability found in the tow width, tow height, and tow 
spacing. A typical RVE is represented in Fig. 2. It consists of two stacked unit cells that are offset from one another 
by the width of one tow. This ply shifting of one tow offset was held constant for all RVEs with varying tow 
parameters. The results generated are summarized in Table 2, and they indicate that the architectural parameters that 
were varied were not enough to capture the variability exhibited by the full cross sections. In addition, the stiffnesses 
were correlated mostly to the volume fractions of the constituents which we know is not entirely the case. Details of 
the analysis can be found in Ref. 2. 
 

 
 
 

 
 

 As previously mentioned, one major component of the architectural variation not considered in the RVE analysis 
was ply shifting since it could not be quantified in the same manner as the tow size and spacing. An investigation 
into the effects of ply shifting indicated that it significantly affected the variability of the stiffness, as shown in Table 
3. The results shown are for one RVE (tow size and spacing remains constant), with varying tow offsets.  The 
magnitude of the tow offset is defined by assuming perfectly aligned tows or unit cells initially, then prescribing one 
unit cell to be offset by a certain fraction of a tow width. The variation in the shifting affects the out-of-plane 
modulus significantly. This effect is mostly due to rearrangement of macroscopic voids. The variability in ply 
shifting decreases the average value of the modulus and increases the amount of variability as compared to the 
results in Table 2. 

A visual assessment of the voids in Figs. 3 to 5 provides clarity into the increased variability in the moduli due to 
shifting. It is known that voids have a significantly more detrimental effect on the out of plane moduli than the in-
plane moduli for varying void content as well as for flat shapes8.  The RVE with the tow offset of one tow has one 
void with a large aspect ratio, and several that are square in shape. The cross section in Fig. 5 has several voids with 
large aspect ratios distributed throughout the composite, which is better represented by the RVE in Fig. 4. As 
previously mentioned, the work of Huang and Talreja8 emphasize the importance of considering the size and aspect 
ratio of the voids. Clearly, when there are more voids with large aspect ratios the stiffness is significantly reduced. 

Table 1. FEA results of moduli for full cross sections 
 Void VF Tow VF Matrix VF  E1 E3 

Cross section 1 3.2 63.0 33.8 237 103 
Cross section 2 4.8 62.8 32.4 227 77 
Cross section 3 3.5 63.9 32.6 234 51 

 

 
Figure 2. Example of a randomly generated RVE 

           Transverse Tow 
          Longitudinal Tow 
         Matrix 
         Void 

 

Table 2. Statistical properties of moduli from Monte Carlo simulations of RVE analysis 
 Mean Standard Deviation 

E1 (GPa) 231.0 5.0 

E3 (GPa) 105.8 6.2 
 
 

Table 3. Moduli for one RVE due to shifting variation (see Fig. 3 and Fig. 4) 
Shifting (tow offset) E1 E3 

1.00 (current RVE) 224 106 
0.75 221 92 
2.50 231 82 
3.25 234 89 
4.50 218 70 
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III.  Analysis Methods 
With each new ply shifting applied, the key architectural change is the size, shape, and location of the voids. 

Some qualitative effects have been studied, but it would be useful to have predictive models to estimate the 
mechanical properties, as well as to provide a physical understanding. The microstructure of the 5HS SiC/SiC 
composite is very complicated. In order to develop an understanding of the effects of voids, without the results being 
convoluted by other aspects of the material geometry, the preliminary analysis will be completed on an isotropic 
material with a Young’s modulus of 100 GPa and a Poisson’s ratio of 0.3. 

A. Finite Element Model 
Previous analysis of the effects of tow variability was completed in 2D for simplicity. This is not the best way to 

model the woven composite, but it gives reasonable estimates in regard to modeling the variability. Since modeling 
the variability in the tow size and tow spacing led to relatively small variability in the stiffness, it may be possible to 
capture the variability in the composite specimens by modeling only the voids, and not the other details of the 
microstructure. At the least, studying the effects of voids in an isotropic material will provide valuable preliminary 
insight into the physical effects of voids on the composite. This also simplifies the problem so that the effects of 
voids can be studied in 3D, eliminating some of the shortcomings of a 2D approximation, especially when 
considering the shear stiffness.  

Finite element analysis was completed using Abaqus10, with 4-node tetrahedron elements. Periodic boundary 
conditions were applied such that one of the macro strains was non-zero and all other strains and the temperature 
differential T∆ were zero. The macro-stresses were calculated by averaging the micro-stresses in the RVE. Using the 
six macro-stresses one can determine the first column of the stiffness matrix, C. The procedure was repeated for the 
other five macro stains to calculate the entire C matrix. From C one can calculate the elastic constants using the 
relations of the type 
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where C is the material stiffness matrix, S is the material compliance matrix, ν is Poisson’s ratio, and E and G are 
Young’s moduli and shear moduli, respectively. 

The finite element model depicted in Fig. 6 is a cuboid of equivalent length and width. The aspect ratio (ratio of 
the length to the height) is 4 to 1, similar to that of the composite cross sections that were available. The voids were 
modeled as cuboids. The sharp corners do not affect the stiffness results; however they will be avoided if a similar 
model is used for examining the effects of voids on strength. The length and width of a given void are also 
equivalent. Since the composite’s weave is balanced, it is safe to assume that if the voids are of a given length when 
scanning from the 1-3 plane, they will be similar when scanning from the 2-3 plane. The voids can occur anywhere 
in the 1-2 plane. However, the location on the 3-axis is constrained to 7 different layers. This reflects the fact that 
the voids generally occur in the interlaminar positions, or between the plies. The descriptions of the specific void 
sizes and locations studied are given in the following section. 

 
 

Figure 4. RVE with tow offset equal to 4.5 
 

Figure 3. RVE with tow offset equal to 1.0 

 
Figure 5. Cross section 2 
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B. Description of Void Cases 
 The variables for this study are the 
number of voids, the aspect ratio, and the 
position of the voids. The aspect ratio 
(AR) is defined by the width (1-
direction) divided by the height (3-
direction). The size (8 mm x 8 mm x 2 
mm) and isotropic material properties of 
the specimen will remain constant, in 
addition to the total void volume fraction 
of 4%. The specimen itself has an aspect 
ratio of 4. The initial exploratory results 
encompass 20 cases summarized 
pictorially below. Additional 1-void cases in which the length did not equal the width were analyzed for the shear 
stiffness analysis. A more thorough description of each case and the FEA results relating to them can be found in the 
Appendix. The variables include the number of voids, the aspect ratio of the voids (aspect ratio of length to height, 
since length and width are assume to equivalent), and the position of the voids. Some positions are not surveyed due 
to symmetry.  
 

 
 
 
 
 
 
                    

                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                
 

 

 
Figure 6. 3D model with 2 cuboid voids 

 

 
Figure 7. 1 Void; Centered; Varying AR 

 
Figure 8. 2 Voids; Centered along 1-axis; Varying 
AR, s1, and s2 

Figure 9. 2 Voids; AR = 8; Voids in opposite 
corner 

Figure 10. 3 Voids; Centered; Varying AR 

Figure 11. 3 Voids; Arranged diagonally on one 
plane 

Figure 12. 3 Voids; Arranged diagonally on 
multiple planes 
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IV.  Results and Analysis 
After analyzing 20 exploratory void cases, a few trends became obvious. The longitudinal stiffness and in-plane 

shear stiffness were not significantly affected by changes in the void aspect ratio and location. However, the 
transverse stiffness and out-of-plane shear stiffness were significantly affected. For a constant void volume fraction 
of 4.0%, the loss in stiffness averaged up to 15%. This is significant in that many models accounting for voids rely 
on void volume fraction alone. For the particular composite studied here, there are other factors besides volume 
fraction that must be significant and important to consider. The average loss of stiffness and the respective standard 
deviation is displayed in Table 4. When considering the effects of placing the voids in various locations with respect 
to one another, the stiffness is minimally impacted. This may not be true for cases in which voids are overlapping 
which will be explored in future work.  

 
 
 
 
 
 
 

 

A. Transverse Stiffness Analysis and Results 
The remaining results and analysis shown in this paper will consider the transverse stiffness and shear stiffness. 

When examining the results of the transverse stiffness, there is an obvious pattern that shows that as the aspect ratio 
of the void increases, the stiffness decreases. The key feature of the void that is changing as the aspect ratio 
increases, is the area of the void on the 1-2 plane. It became clear that the projected area of the voids in the 
transverse direction (or the area of the void in the 1-2 plane) was important to determining the stiffness. The plot in 
Fig. 13 plots the transverse stiffness as a function of the area fraction,���, which can be define as the ratio of the 
projected void area, a3, to the total area of the 12 plane, A3, and written as  

 

��� =	
��
��

																																																																																																		(2) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
A strong linear relationship is found between the projected area of the voids and the resulting stiffness. The 

equation of the line is 
 

�� =	−70.96��� + 102.79																																																																						(3) 
 

and the coefficient of determination, R2, is 0.98. There is obviously a small error in the fit because we know that the 
intercept should be 100 (at a void ratio of 0, the stiffness should be 100 GPa).  Using the linear equation, the void 
cases not used for the fit (cases with various void spacing) can be used to check how well the fit predicts the 

Table 4. Loss of stiffness based on 20 void cases with a constant volume 
fraction of 4.0%, described in Section III and the Appendix 

 E1 E2 E3 G12 G13 G23 

Average % loss of stiffness 0.7 1.0 12.5 1.2 12.4 14.9 

Standard Deviation 0.5 0.5 4.1 0.7 3.1 4.4 

 

Figure 13. Plot of area ratio versus resultant transverse stiffness 
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stiffness for other void cases. When using the equation, the RMS (root mean square) error was 0.45 GPa which is 
very small. Using the equation does not account for any variability due to spacing, since the area ratio is the only 
input. It is important to note again that the voids’ placement did 
not significantly affect the stiffness, so the relative variability in 
that data set is small.  

The relationship of the projected area to the transverse 
stiffness may be useful, but it does not provide any physical 
understanding about the effects of voids. Intuitively one would 
assume the slope of the line in Fig. 13 would be -100, which is 
not the case. In order to arrive at a physical explanation we can 
examine a problem in which we have two materials stacked on 
top of one another as shown in Fig. 14.  The displacement of the 
material can be written as  

 
 

                              (4) 
 

 
where F is a force applied to the material, A3 is the area of the material, a3 is the area of the void in Material 3, L3 is 
the total length of the isotropic material in the 3-direction, l3 is the length of the void, E3 is the material’s nominal 
stiffness, and ��′ is the resultant stiffness due to the void. A 3-dimensional image is provided in Fig. 15. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Equation 4 simplifies to  
 

1

1 �
∆��
��

� 1 � ��
1

�1 � ���

																																																																													�5
 

 
where Vv is the void volume fraction, ∆��	is the change in trasverse stiffness due to the voids, and ��� was defined in 

Eq. 2.   If ��� and 
∆��

��
 are small, the following approximation can be used: 

 
1

1 � �
� 1 � �		 

Equation 5 then simplifies to  
 

∆��

��
� ���1 � ���
																																																																																	�6
 

3 3 3 3
3 '

3 3 3 3 3 3 3

( )

( )

F L l Fl FL

A E A a E A E

−∆ = + =
−

 
Figure 14. Illustration of example problem 

 

 
Figure 15. Definition of geometry 
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This relationship poorly predicts the FEA result, with an RMS error of 8.2 GPa. It was hypothesized that the height 
of the void,	��, has an effect on the stiffness that extends beyond the nominal height. Equation 6 can then be 
rewritten as  
 

∆��
��

= ������̅ + �!(1 + ���) = ��(1 + ���) + ����(1 + ���)																																								(7) 

 
where ξ is a correction factor to the height fraction of the void and ��̅ is the height fraction of the void 
 

��̅ =	
��
"�

 

 
The height fraction may be referred to as the length fraction, also. In order to determine what the correction factor 
should be, the results from the basic approximation given by Eq. 6 and the FEA results can be used to solve for ξ 
with the equation as derived below. 
 
 

∆��
��

#�$

−
∆��
��

%&%'()*+%'

= ��(1 + ���) + ����(1 + ���) − ��(1 + ���)	 

 

� =

∆��
��

#�$
− ∆��

��

%&%'()*+%'

���(1 + ���)
																																																																(8) 

 
When the values for ξ are solved and plotted against the original length fraction,��̅, a strong linear relationship 
exists, shown in Fig. 16. The effective length fraction,	��̅- , can also be plotted against the original length as shown in 
Fig. 17 so that there is a relationship between the original length fraction and the effective length fraction. 
 

��̅- = ��̅ + �																																																																																										(9) 
 
The relationship between the original length fraction and the corrected length fraction is 
 

��̅- = −0.33��̅ + 0.51																																																																																		(10) 
 
The need for a corrected length implies that there is more material that is not load-bearing than simply the space of 
the void in the total RVE volume. Instead, it extends farther through the thickness. The 45° line on the graph of Fig. 
17 represents the result if no 
correction was applied (the length 
fraction is equal to the corrected 
length fraction). The line 
demonstrates a clear difference 
between the original length 
fraction and that of the corrected 
length fraction. As the original 
length of the void increases, the 
correction factor and thus the 
amount the length needs to be 
corrected decreases. This reflects 
the fact that as the void’s size 
increases, its influence on the 
material around it is reaching the 
boundaries of the material and 
thus cannot be further corrected.  
 

Figure 16. Original length fraction /̅0 versus the length correction factor ξ 
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Table 5 provides a comparison of the predicted decrease in the transverse stiffness for a few sample cases using Eq. 
3, for linear regression to the projected area, and Eq. 7, using the corrected length fraction, versus the results from 
FEA. Both methods appear to be reasonable at predicting the stiffness loss due to voids for the given cases.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

B. Shear Stiffness Analysis and Results 
The shear stiffness discussion presented here is based on analysis of only one void of varying size in order to 

more easily see the effects of the geometry of the void on the stiffness reduction. The shear stiffnesses as the area 
fraction of the void,	���, changes are plotted in Fig. 18. For all data the height of the void, l3, are held constant. 
Varying heights affected the stiffness by less than 5%. A quadratic relationship is found between the projected area 
of the voids and the resulting stiffness. The equation of the line is 

 
12� ≈ 13� =	−10.9���3 − 26.77��� + 	38.46																																																																(11) 

 
In the same way that the transverse stiffness calculation must account for a corrected length, the shear stiffness 

calculation must account for a corrected area. The shear stress at the wall of the void is zero, and small near the 
boundary of the void. In this way, the effect of the void on the stresses extends further than just the space the void 
occupies. This is illustrated in Fig. 19. The equations below are derived with respect to G13, but are written similarly 
for G23 also.  

 
 
 
 

Table 5. Comparison of ∆E3 for sample cases not used in length fraction 
linear regression 

  
∆E3 Linear 

Regression (GPa) 
∆E3 Corrected 

Equation (GPa) 
∆E3 FEA 

(GPa) 

1 void, AR = 3 4.1 4.8 6.3 

1 void, AR = 5 6.8 6.4 7.3 

1 void, AR = 8 10.4 9.7 11.3 

1 void, AR = 10 12.5 11.8 13.7 

2 voids, s2 = max 13.8 13.2 14.0 

4 voids, 4 different 
AR's, aligned 

7.7 7.3 7.7 

 

Figure 17. Original length fraction /̅0 versus the effective length fraction/̅0
- . 

The 45° line illustrating the difference between the original length fraction and 
the corrected value. 
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A similar relationship to that of Eq. 5 can be derived for the shear stiffness reduction 
 

1
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� 1 �
��
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Assuming a corrected area is necessary, a relationship between the corrected area ���

- and the calculated shear 
stiffness reduction according to finite element analysis can be written as  

 

���
- �

∆12�
12�

∆12�
12�

�
∆12�
12�

��̅ � 1
																																																																											�13
 

 
Knowing that �2̅ will affect G13 differently than	�3̅, ���

-  can be thought of as�2̅′�3̅′. Therefore, the analysis was 
completed by using only one void while holding �2̅ constant and varying�3̅. This was done for several values of �2̅

- . 
The data can be found in Table A3 of the Appendix. Similarly to the length correction in the previous section, a 
relationship between the actual area, ��� and the corrected area, ���′ can be found. The data are plotted in Fig. 20. 
Through curve fitting, we found that the areas are related by the equation 
 

���
- �	�1.84���

3 � 2.60���																																																																						�14
 

 
Figure 18. Area fraction of void versus shear stiffness 
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Figure 19. Shear stress around the void 

of void versus shear stiffness 
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with an R2
 value of 0.97. The length fractions are plotted against the corrected area in Fig. 21. For small l1’s, the 

effect of l2 on the area is linear. As l1 increases the relationship between l2 and the corrected area becomes quadratic. 
This explains the deviation from linearity in the curve of Fig. 20. The deviation from linearity between the 
uncorrected and corrected areas is likely caused by effects of the void approaching the boundary, as was observed in 
the transverse stiffness results.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Figure 20. Uncorrected area fraction versus corrected area fraction 
according to Eq. 13 
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
o

rr
ec

te
d

 A
re

a 
R

at
io

 a
3/

A
3 

Uncorrected Area Ratio a3/A3 

Figure 21. Length fractions /̅5 and /̅6 versus the corrected area 

y = 0.05x2 + 0.22x
R² = 1.00

y = -0.001x2 + 0.635x
R² = 0.991

y = -0.20x2 + 1.03x
R² = 0.99

y = -0.69x2 + 1.60x
R² = 1.00

y = -0.93x2 + 1.87x
R² = 0.99

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
o

rr
ec

te
d

 A
re

a 
F

ra
ct

io
n

l2

L1 = 0.125

L1 = .25

L1 = 0.375

L1 = 0.625

L1 = 0.875D
ow

nl
oa

de
d 

by
 B

ha
va

ni
 S

an
ka

r 
on

 O
ct

ob
er

 2
9,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

16
19

 

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 



 
American Institute of Aeronautics and Astronautics 

 

 

12 

 Table 6 and Table 7 provide a comparison of the predicted decrease in shear stiffnesses for a few sample cases 
using Eq. 11, for the quadratic fit to the projected area, and Eq. 13, using the corrected area fraction calculated from 
the empirical relationship in Eq. 14, versus the results from FEA. When comparing the results of the two tables, it is 
clear that G13 and G23 are not equivalent and likely dependent on some directional component that a relationship to 
area fraction cannot capture. It is not clear which method is more accurate. Further investigation regarding how the 
lengths, instead of only the area will be considered for future work.  
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

V. Concluding Remarks  
After completing finite element analysis on several cases of void size and spacing while the void volume fraction 

remained constant, it was clear that the voids affect the transverse stiffness and the out-of-plane shear stiffness the 
most (up to 15% stiffness degradation on average for a void volume fraction of 4%). In an attempt to determine the 
driving factors of the reduction in stiffness, we found that for the transverse stiffness, the projected area of the voids 
onto the 1-2 plane had a significant impact. A strong linear relationship was found between the area and the 
resulting stiffness, but the relationship involving a corrected length fraction provided a better physical 
understanding. The voids effect on the load bearing volume extends further than the space that the void occupies, 
which offers an explanation of why relationships based solely on volume fraction are not sufficient when the voids 
of the composite have large aspect ratios and are unevenly distributed. Similarly, we found that the shear stiffness is 
also related to the projected area of the voids onto the 1-2 plane. However, an area correction, rather than a length 
correction is most appropriate due to the small shear stress around the walls of the voids. Future work will consider 
the effects of non-symmetry in the shear stiffness. The problems that arise when there are more voids that are 
potentially overlapping will also be addressed. 

 
 
 
 

Table 6. Comparison of ΔG13 for sample cases 

 A3 ΔG13 FEA (GPa) ΔG13 Quadratic 

Fit  (GPa) 

ΔG13 Corrected 

Area  (GPa) 

1 void 0.22 6.43 6.27 5.53 

2 voids 0.27 5.78 8.07 5.48 

3 voids 0.27 5.30 7.95 6.23 

2 voids misaligned 0.23 4.74 6.81 5.76 

4 voids, various AR 0.15 3.64 4.18 4.30 

RMS Error (GPa)   1.85 0.81 

 
Table 7. Comparison of ΔG23 for sample cases 

 A3 ΔG23 FEA (GPa) ΔG23 Quadratic 

 Fit  (GPa) 

ΔG23 Corrected  

Area  (GPa) 

1 void 0.22 6.42 6.27 5.53 

2 voids  0.27 7.36 8.07 5.48 

3 voids 0.27 7.29 7.95 6.23 

2 voids misaligned 0.23 6.14 6.81 5.76 

4 voids, various AR 0.15 3.79 4.18 4.30 

RMS Error (GPa)   0.57 1.10 
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Appendix 
The void cases studied are described below and their respective data are found in Table A1 and Table A2 below. 

The cases are shown pictorially in Section III. 
• 1 void; Centered; Aspect ratio (AR) = 3, AR = 5, AR = 8, AR = 10 
• 2 voids; Centered and aligned in “1” direction; d1 constant; AR = 3, AR = 5, AR = 8, AR = 10 
• 3 voids; Centered and aligned in “1” direction; d1 constant; AR = 3, AR = 5, AR = 8, AR = 10 
• 2 voids; AR = 8; Aligned in “1” direction; s1 = 0.15 mm, s1 = .57 mm, s1 = 1 mm, s1 = 1.6 mm 
• 2 voids; AR = 8; Aligned in “1” direction; s1 constant; s2 – maximum possible distance apart (one void on 

bottom, one void on top) 
• 2 voids; AR = 8; NOT aligned in “1” direction (located in opposite corners); s1 constant; s2 – maximum 

possible distance apart (one void on bottom, one void on top);  
• 3 voids; AR = 10; Voids diagonal, but in same plane 
• 3 voids; AR = 10; Voids diagonal, but in different planes;  

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A1. Data from void cases with varying aspect ratios 

# Voids AR E1 (GPa) E2 (GPa) E3 (GPa) G12 (GPa) G13 (GPa) 

1 3 98.0 98.0 95.7 37.4 35.4 

1 5 98.7 98.7 92.7 37.8 34.4 

1 8 99.1 99.1 88.7 38.0 32.9 

1 10 99.4 99.4 86.3 38.1 32.0 

2 3 98.5 98.1 94.3 37.5 35.8 

2 5 99.1 98.8 90.9 37.8 34.9 

2 8 99.5 99.3 86.1 38.1 33.6 

2 10 99.6 99.4 83.2 38.2 32.6 

3 3 99.0 98.2 93.8 37.5 36.0 

3 5 99.4 98.8 89.9 37.9 34.8 

3 8 99.8 99.3 84.7 38.1 33.2 

3 10 99.9 99.4 80.2 38.2 31.7 

 
 Table A2. Data from void cases with aspect ratio of 8 and varying spatial distributions 

# Voids Spacing  

Description 
E1 (GPa) E2 (GPa) E3 (GPa) G12 (GPa) G13 (GPa) 

2 s1 = 0.16 mm 99.6 99.3 86.0 38.1 33.0 

2 s1 = 0.57 mm 99.6 99.3 86.2 38.1 33.5 

2 s1 = 1 mm 99.5 99.3 86.2 38.1 33.6 

2 s1 = 1.6 mm 99.5 99.3 86.2 38.1 33.6 

2 s2 = max 99.5 99.3 86.0 38.1 33.7 

2 Opposite  

corners 

99.3 99.3 86.1 38.2 33.0 

3 Diagonal; 

 same plane 

99.4 99.3 84.7 38.2 33.1 

3 Diagonal; 

 tiered planes 

99.5 99.3 84.5 38.2 33.3 
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